模具知识|驱动轴箱体压铸模设计

   日期:2017-02-19     来源:建材之家    作者:模具之家    浏览:25    评论:0    
核心提示:关键字:压铸模|方导柱|侧抽机构|模具温度|加热器|抽真空|复合液压缸 摘要:介绍典型的大型压铸模具的设计方案,模具采用方导柱导向,周边堤坝式封闭结构精定位,采用冷却水和加热油加热器同时控制模具温度、真空压铸,提高铸件质量,保证压铸生产的连续性和稳定性;同时采用复合液压缸抽芯,提高了生产效率。 图一是为某发动机公司开发的驱动轴箱体压铸件,铸件外形尺寸500×444×230,

模具知识|专家教你辨别真假汽车配件

推荐简介:昨天上午,北京市质量技术监督局和朝阳区质量技术监督局共同在东郊汽配城举办大型的现场汽车零配件真假防伪的咨询和演示。很多商户和车友会的成员都顶着大风前来参加。 东郊汽配城的王师傅现场当起了辨假专家,“您看这两个刹车片,从外观上根本看不出真假,但如果仔细闻一下气味,就会发现,真的刹车片有种刺鼻的气味,假的什么味也没有。有的国产车刹车时会发出‘嗞嗞’的声音,那多半是用了假的刹车片的结果。”......
模具之家讯:关键字:压铸模|方导柱|侧抽机构|模具温度|加热器|抽真空|复合液压缸摘要:介绍典型的大型压铸模具的设计方案,模具采用方导柱导向,周边堤坝式封闭结构精定位,采用冷却水和加热油加热器同时控制模具温度、真空压铸,提高铸件质量,保证压铸生产的连续性和稳定性;同时采用复合液压缸抽芯,提高了生产效率。

图一是为某发动机公司开发的驱动轴箱体压铸件,铸件外形尺寸500×444×230,铸件材料为铝合金360,重量6.25Kg,壁厚3mm。铸件要求如下:

 

(1)密封性能要求在0.1Mpa压力下不能泄漏;

(2)由于装配总成均为密封件,所以加工表面不允许有大于0.3mm的气孔;

(3)铸件后序要做电泳处理,因此需要高水平的表面质量。

1 压铸模具的设计准备

1.1 对模具结构的初步分析

根据铸件的要求,对铸件进行工艺分析,确定主分型面,模具结构为三面侧抽滑块,在无滑块的一侧布置浇道,浇道对面一侧设置溢流槽及抽真空流道。为保证铸件有较高的内外质量,模具内必须设置一套合理的冷却、加热通道,保证在压铸过程中处于合理的热平衡状态。另外,模具要加设抽真空阀,采用真空压铸。

1.2 压铸机的选择

(1)计算主胀型力 F主=A×p/10

A为铸件带浇注系统总的投影面积,为1638cm2(其中铸件1260 cm2,另加30%浇注系统的面积),

p为压实压力,耐压薄壁件取90Mpa,

F主=A×p=1638×90/10=14742 KN

(2)计算分胀型力

由于此模具两侧形状完全由两面侧抽滑块成型,侧面分力很大,因此分胀型力不能忽略。

F分=A芯×p×tgα / 10

A为铸件侧抽滑块成型处总的投影面积,为636cm2,

α为楔紧角,取6°,

F分=A芯×p×tgα / 10=636×90×tg6°/10=602 KN

(3)压铸机所需锁模力

F锁≥ 1.25(F主+ F分)=1.25×(14742+602)=1918 KN

因此,选用设备为意大利OL2000T,机床锁模力为2000 KN。

2 压铸模具设计

2.1 浇注系统和溢流、排气系统的设计

(1)内浇口截面积 Ag=G /(ρvt)

G为通过内浇口的金属液质量6250g,

ρ为液态铝合金密度,取2.4g/cm3,v为填充速度取30m/s,t填充时间取0.1s,

Ag=G /(ρvt)=6250/(2.4×30×0.1)=868mm2



驱动轴箱体零件结构非常不利于填充,整体零件可以分为由壁厚3mm的三部分筒形组成,如图二所示,分别为左部外腔(A区域)、中心部分内腔(B区域)及右部外腔(C区域),根据零件结构的特殊性,将浇口布置也分为三部分,从左到右,内浇口的宽度×厚度为95×4.0、45×3.0、90×4.0,分别对应A、B、C三个区域进行填充。由于型腔中部B区域无处设置溢流槽、排气道,所以将中部浇口旋转一定的角度,沿着铸件中筋的方向进行填充,同时将中心浇口的厚度变薄,有利于快速填充,减小金属液在薄壁处的能量损失。

(2)溢流排气系统的设计

由于此铸件结构不利于填充,因此在填充末端设置大体积的溢流槽,约60×40×30共5处。为有效地减少铸件内部气孔,改善内部组织的致密性,在模具型腔金属液填充末端加设两处真空阀,进行真空压铸。

真空压铸的原理:

a.合模后压铸,压射冲头在慢压射越过压室进料口后,打开抽气节流阀,接通大流量真空源,使压室及型腔内的真空度达到90-96Kpa,充型、增压,填充完了关闭真空源。

b.真空阀排气道是由波形转折的薄片通道连接真空源,薄片通道多次转折并有外冷却,金属液充填型腔进入薄片通道内逐渐失去流动能力,有效阻止金属液进入真空管路内,同时保证整个填充过程均在抽真空状态下进行。

3模具结构设计

模具结构设计如图三所示,模板采用方导柱导向,周边呈堤坝式封闭结构精定位,实现合模时动静模的精确定位和锁紧,消除热膨胀对模具使用精度的影响。三面侧抽滑块采用封闭式滑道结构,液压抽芯。
图 三

4侧抽液压缸的设计

根据侧抽滑块抽芯力的计算,确定左侧滑块抽芯液压缸直径为Φ250,行程520(包括20mm的安全量),右侧滑块抽芯液压缸直径为Φ230,行程350。由于液压缸直径大、行程长,抽芯动作速度缓慢,严重影响生产节拍。我们采用图四结构的复合液压缸,初始抽芯时直径为Φ250的缸工作抽出22mm,保证侧抽滑块型腔与铸件脱离后,直径为Φ160的缸开始工作,带动侧抽滑块完成剩下的抽芯行程。这样Φ250缸满足抽芯力的要求,Φ160缸满足抽芯行程的要求,组合完成抽芯动作,节省抽芯动作的时间,提高了生产效率。
图 四 复合液压缸

5 模具加热、冷却系统的设计

在压铸过程中,模具温度偏离设定值的波动对压铸模具的热平衡有很大的影响,模具温度是影响模具热量散发的重要因素,间接地影响铸件充型和凝固过程。为保证铸件的质量,需要在模具中保持均匀的温度分布和合适的温度水平。

众所周知,在薄壁铸件和复杂模具的情况下,熔融金属可能在压射过程中就凝固了。在铝合金的压铸过程中,这种情况将产生流痕、冷隔等缺陷,更严重的是可能压射不足。驱动轴箱体压铸模就属于这种情况。为保证模具在合理的温度范围内压铸,我们在模具的动、静模镶块上开设大量的加热油通道,压铸机上设有加热器(能调节和控制油温),在压铸过程中当模具温度下降时能加热模具,模具温度升高时带走热量冷却模具,控制模具温度在180±30℃范围内。

模具侧抽滑块长芯四周被铸件包围,温度升高很快,因此在侧抽滑块长芯处开设冷却水道,外接冷却水,可以迅速地带走热量,避免温度过高产生粘模和铸件变形。
图五

6 模具材料及热处理

模具镶块及侧抽滑块等成型零件采用优质模具钢 W302,淬火硬度HRC42-44;型芯、推杆采用优质模具钢SKD61,淬火硬度HRC42-44;导柱导套采用GCr15,淬火硬度HRC50-55;模板采用50钢,调质HB240-270;推板、推杆固定板采用45钢。

7 小结

 模具按设计要求制作完成后,经试模和生产验证,模具工作稳定,铸件成型良好,并有效的提高生产率,并能满足批量生产的要求。

参考文献

[1]潘宪曾.《压铸模设计手册》.北京:机械工业出版社,2006.

[2]卢晨,赵诚.《压铸模具的温度控制》.武汉:特种铸造及有色合金杂志社,2005.
模具之家为您提供最全面的塑胶,塑料,模具,模具设计,塑胶模具品牌的装修知识点和各种塑胶模具的导购与在线购买服务,拥有最便宜的塑胶模具价格和最优质的售后服务,敬请登陆模具之家:http://muju.jc68.com/
广告
 
打赏
 
更多>文章标签:模具 ;相关产品:
更多>同类头条资讯
0相关评论

推荐图文更多...
点击排行更多...
模具商圈内事更多...
最新视频更多...
推荐产品更多...
建材风水 | 木板之家 | 电工之家 | 壁纸之家 | 净化之家 | 安防之家 | 水暖之家 | 洁具之家 | 窗帘头条 | 家饰之窗 | 老姚之家 | 灯饰之家 | 电气之家 | 全景头条 | 陶瓷之家 | 照明之家 | 防水之家 | 防盗之家 | 博一建材 | 卫浴之家 | 区快洞察 | 郑州建材 | 驻马店建材 | 周口建材 | 信阳建材 | 商丘建材 | 南阳建材 | 三门峡建材 | 漯河建材 | 许昌建材 | 濮阳建材 | 焦作建材 | 新乡建材 | 鹤壁建材 | 安阳建材 | 平顶山建材 | 洛阳建材 | 开封建材 | 武汉建材 | 神农架建材 | 天门建材 |
建材 | 720全景 | 企业之家 | 移动社区 | 关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图 | 排名推广 | 广告服务 | 积分换礼 | RSS订阅 | sitemap |
(c)2015-2017 BO-YI.COM SYSTEM All Rights Reserved
Powered by 模具头条