模具知识|液压泵轴承故障诊断网络法研究

   日期:2017-01-20     来源:建材之家    作者:模具之家    浏览:42    评论:0    
核心提示:摘要:研究了基于集成BP网络的液压泵轴承故障诊断方法。利用频域和倒频域 进行特征提取,采用集成BP网络进行故障诊断和识别,解决了液压泵轴承故障特征提出困难 、多故障识别困难的问题。试验结果表明,利用集成BP网络可以有效地诊断与识别液压泵轴承多故障模式,并且具有很强的鲁棒性。  关键词:液压泵;轴承故障;故障诊断;集成BP网络   在航空工业中,液压系统的工作性能直接影响着飞机的安全和旅客的生命,

模具知识|注塑成型过程中的压力调节

推荐简介:无论是油压式还是电动式注塑机,所有注塑过程中的运动都会产生压力。适当控制所需压力,才能生产出质量合理的成品。  压力调控及计量系统在油压式注塑机上,所有运动由负责以下操作的油路执行:  1塑化阶段中的螺杆旋转。  2滑座料道(注嘴靠近注口衬套)。  3注射和保压期间射料螺杆的轴向运动。  4将基材闭合於射料杆上,直到肘杆全部延伸或活塞合模行程已完成。  5启动装配顶杆的顶出臺以顶出部件。  在全电......
模具之家讯:摘要:研究了基于集成BP网络的液压泵轴承故障诊断方法。利用频域和倒频域 进行特征提取,采用集成BP网络进行故障诊断和识别,解决了液压泵轴承故障特征提出困难 、多故障识别困难的问题。试验结果表明,利用集成BP网络可以有效地诊断与识别液压泵轴承多故障模式,并且具有很强的鲁棒性。


关键词:液压泵;轴承故障;故障诊断;集成BP网络


在航空工业中,液压系统的工作性能直接影响着飞机的安全和旅客的生命,而液压泵是液压 系统的动力源,因此对液压泵的状态监控与故障诊断尤为重要。轴承故障是液压泵常见的故 障模式之一,由于轴承故障所引起的附加振动相对于液压泵的固有振动较弱,因而很难把故 障信息从信号中分离开来。到目前为止,对液压泵轴承故障的故障诊断尚缺少十分有效的方 法。本文提出在频域和倒频域进行特征提取,旨在解决轴承特征提取困难的问题并利用集成 BP网络解决多故障诊断与识别和鲁棒性问题。


1 液压泵轴承故障的特征提取


对于机械系统而言,如有故障则一定会引起系统的附加振动。振动信号是动态信号,它包含 的信息丰富,很适合进行故障诊断。但是如果附加振动信号由于固有信号或外界干扰对故障 信号的干扰很大而淹没,那么如何从振动信号中提取有用信号就显得十分关键。


根据摩擦学理论,当轴承流动面的内环、外环滚道及滚柱上出现一处损伤,滚道的表面平滑 受到破坏,每当滚子滚过损伤点,都会产生一次振动。假设轴承零件为刚体,不考虑接触变 形的影响,滚子沿滚道为纯滚。


Hilbert变换用于信号分析中求时域信号的包络,以达到对功率谱进行平滑从而突出故 障信息。定义信号:为最佳包络。倒谱包络模型实质是对从传感器获得的信号进行倒频谱分析,然后对其倒频谱信号进行包络提取,从而双重性地突出了故障信息,为信噪比小的故障特征的提取提供了依据。

2 集成BP网络进行故障诊断的原理


神经网络的组织结构是由求解问题的领域特征决定的。由于故障诊断系统的复杂性,将神经网络应用于障诊断系统的设计中,将是大规模神经网络的组织和学习问题。为了减少工作的复杂性,减少网络的学习时间,本文将故障诊断知识集合分解为几个逻辑上独立的子集合,每个子集合再分解为若干规则子集,然后根据规则子集来组织网络。每 个规则子集是一个逻辑上独立的子网络的映射,规则子集间的联系,通过子网络的权系矩阵表示。各个子网络独立地运用BP学习算法分别进行学习训练。由于分解后的子网络比原来的网络规模小得多且问题局部化了,从而使训练时间大为减少。利用集成BP网络进行液压泵轴承故障诊断的信息处理能力源于神经元的非线性机理特性和BP算法。


3、神经网络鲁棒性的研究


神经网络的鲁棒性是指神经网络对故障的容错能力。众所周知,人脑具有容错特性,大脑中个别神经元的损伤不会使它的总体性能发生严重的降级,这是因为大脑中每一概念并非只保存在一个神经元中 ,而是散布于许多神经元及其连接之中。大脑可以通过再次学习, 使因一部分神经元的损伤而淡忘的知识重新表达在剩余的神经元中。由于神经网络是对生物神经元网络的模拟,所以神经网络的最大特征是具有“联想记忆”功能,即神经网络可以由以往的知识组合,在部分信息丢失或部分信息不确定的条件下,用剩余的特征信息做出正确的诊断。表2给出了轴承6个特征信息中某些输入特征不正确或不确定情况下正确诊断和识别的成功率。


表1 神经网络鲁棒性统计表

输入特征不确定元素 诊断成功率

一个特征参数不确定 100%

二个特征参数不确定 94%

三个特征参数不确定 76%

四个特征参数不确定 70%

五个特征参数不确定 20%

六个特征参数不确定 8%

由表1可以看出,利用集成神经网络进行故障诊断可以在丢失了大量信息的情况下(近一半特征参数不确定)仍可以作出正确判断的成功率相当高(76%~100%)因而集成神经网络具有很强能力


5 结论


由于神经网络具有自学习、自组织、联想记忆等多种功能决定了神经网络方法是很适合于进行故障诊断研究。本文利用频域和倒频域的振动信号作为特征参数,利用集成BP网络实现了液压泵轴承的多故障诊断与识别。试验结果表明,该方法具有很高的成功率和鲁棒性.

模具之家为您提供最全面的塑胶,塑料,模具,模具设计,塑胶模具品牌的装修知识点和各种塑胶模具的导购与在线购买服务,拥有最便宜的塑胶模具价格和最优质的售后服务,敬请登陆模具之家:http://muju.jc68.com/
广告
 
打赏
 
更多>文章标签:模具之家 ;相关产品:
更多>同类头条资讯
0相关评论

推荐图文更多...
点击排行更多...
模具商圈内事更多...
最新视频更多...
推荐产品更多...
建材风水 | 木板之家 | 电工之家 | 壁纸之家 | 净化之家 | 安防之家 | 水暖之家 | 洁具之家 | 窗帘头条 | 家饰之窗 | 老姚之家 | 灯饰之家 | 电气之家 | 全景头条 | 照明之家 | 防水之家 | 防盗之家 | 区快洞察 | 郑州建材 | 驻马店建材 | 周口建材 | 信阳建材 | 商丘建材 | 南阳建材 | 三门峡建材 | 漯河建材 | 许昌建材 | 濮阳建材 | 焦作建材 | 新乡建材 | 鹤壁建材 | 安阳建材 | 平顶山建材 | 洛阳建材 | 开封建材 | 武汉建材 | 神农架建材 | 天门建材 |
建材 | 720全景 | 企业之家 | 移动社区 | 关于我们  |  联系方式  |  使用协议  |  版权隐私  |  网站地图 | 排名推广 | 广告服务 | 积分换礼 | RSS订阅 | sitemap |
(c)2015-2017 Bybc.cn SYSTEM All Rights Reserved
Powered by 模具头条